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Results are presented from a high-resolution computational study of particle-driven
gravity currents in a plane channel. The investigation was conducted in order to obtain
better insight into the energy budget and the mixing behaviour of such flows. Two-
and three-dimensional simulations are discussed, and the effects of different factors
influencing the flow are examined in detail. Among these are the aspect ratio of the
initial suspension reservoir, the settling speed of the particles, and the initial level of
turbulence in the suspension. While most of the study is concerned with the lock-
exchange configuration, where the initial height of the suspension layer is equal to the
height of the channel, part of the analysis is also done for a deeply submerged case.
Here, the suspension layer is only one-tenth of the full channel height. Concerning
the energy budget, a careful analysis is undertaken of dissipative losses in the flow.
Dissipative losses arising from the macroscopic fluid motion are distinguished from
those due to the microscopic flow around each sedimenting particle. It is found
that over a large range of settling velocities and suspension reservoir aspect ratios,
sedimentation accounts for roughly half of all dissipative losses. The analysis of the
mixing behaviour of the flow concentrates on the mixing between interstitial and
ambient fluid, which are taken to be of identical density. The former is assumed to
carry a passive contaminant, whose dispersion with time is analysed qualitatively and
quantitatively by means of Lagrangian markers. The simulations show the mixing
between interstitial and ambient fluid to be more intense for larger values of the
particle settling velocity. Finally, the question is addressed of whether or not initial
turbulence in the suspension may exert a significant effect on the flow evolution. To
this end, results from three simulations with widely different levels of initial kinetic
energy are compared. While the initial turbulence level strongly affects the mixing
within the current, it has only a small influence on the front velocity and the overall
sedimentation rate.

1. Introduction
Gravity currents, which form when a heavier fluid propagates into a lighter one,

are common in many environmental and engineering applications (see e.g. Simpson
1997). Particle-driven gravity currents are a special class of gravity currents, as in this
case when the density difference is caused by a differential loading with suspended
particles. Typical examples of particle-driven gravity currents are turbidity currents
in oceans or lakes, which play an important role, for example, in erosion processes
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Figure 1. Sketch of the initial set-up of the simulations in a plane channel of length L1, width
L2 and height L3 (gravity acts in the vertical direction). Initially, a subvolume of the channel
(length Ls

1, width Ls
2 = L2, height Ls

3) is filled with particle-laden fluid. The remaining part of
the channel contains clear fluid, which is separated from the suspension by a vertical splitter
plate located at x1 = 0.

as well as in the transport of sediment (Huppert 1986; Parker, Fukushima & Pantin
1986; Middleton 1993; Dade & Huppert 1994; Kneller & Buckee 2000).

From a practical point of view, being able to predict both speed and run-out
length of a particle-driven gravity current is of great interest. For such predictions,
often simplified integral models or theoretical approaches based on shallow-water
theory are employed (Bonnecaze, Huppert & Lister 1993; Dade & Huppert 1995;
Gladstone & Woods 2000; Hogg, Ungarish & Huppert 2000; Ungarish & Huppert
2000). The empirical input required for validation of these models to a large extent
stems from laboratory experiments (cf. Rottman & Simpson 1983; Altinakar, Graf &
Hopfinger 1990; Bonnecaze et al. 1993; de Rooij & Dalziel 1998) in which global flow
features such as the speed or height of propagating fronts are studied in prototype
configurations. However, while the overall shape of the current and the speed of
propagation are relatively easily monitored, velocity and concentration fields within
the front are difficult to measure accurately in the laboratory. This is mainly because
the application of advanced optical techniques is complicated in particle-laden flows.
Here, high-resolution numerical simulations can help to provide the missing insight
required to close some of the gaps in knowledge. For density-driven gravity currents,
the first high-resolution simulations were presented by Härtel et al. (2000a, b). Particle-
driven gravity currents were tackled by Necker et al. (2002).

Following up on that work, we present in this paper a numerical simulation study
of several issues which are fundamental to the motion of gravity currents, but which
have not been examined in detail in previous work. As a generic configuration, we
will consider particle-driven fronts in a plane channel which is filled with particulate
suspension and clear fluid. A principle sketch of the initial set-up is given in figure 1.
Most of our analysis will be concerned with a lock-exchange situation, where the
height of the suspension layer is identical to the height of the channel. For this case,
the length of the reservoir is varied in order to examine the effect of the aspect ratio
of the suspension volume. Moreover, a simulation is made for a reservoir of height
much smaller than the channel height, in order to highlight differences and similarities
between the lock-exchange configuration and a deeply submerged particulate gravity
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current. Both three-dimensional and two-dimensional simulations are performed, and,
at times, reference to density-driven flows is made for direct comparison of the results.

The first issue we wish to address in the present study relates to the energy bugdet of
the flow. Here, we will focus on the overall balance between potential energy, kinetic
energy and dissipative losses. The relevance of this issue becomes clear from the fact
that gravity-induced dispersion in essence means conversion of potential energy into
kinetic energy of fluid motion. The fluid motion in turn is subject to viscous friction
which impedes the flow. In particle-driven gravity currents, the situation is further
complicated by the fact that sedimentation of the suspended matter acts as an addi-
tional sink of energy. Although this energy loss does not directly counteract the fluid
motion, it reduces continuously the driving potential of the flow. This phenomenon is
absent in purely density-driven gravity currents, and it makes particulate fronts come
to rest after a certain run-out length. Clearly, how far a front will spread depends
directly on how much of the initially available potential energy remains available for
inducing large-scale fluid motion. This in turn depends on both the particle charac-
teristics and the initial setting of the flow. In the present paper, we will examine
these dependencies by considering lock-exchange flows which differ with respect to
the particle settling speeds, and which evolve from rectangular suspension reservoirs
of different aspect ratios.

The second issue addressed here is the mixing behaviour of particulate gravity
currents. Entrainment of – and mixing with – ambient fluid has been studied in some
detail for density-driven flows (cf. Beghin, Hopfinger & Britter 1981; Thomas &
Simpson 1985; Garcı́a & Parsons 1996; Hallworth et al. 1996), but much less is
known about particulate flows in this respect. Again, compared with the density-
driven case, particle-driven flows feature additional complications due to particle
settling, which makes it necessary to distinguish between ambient fluid, particulate
matter and interstitial fluid (i.e. the fluid that initially carries the particles). For
simplicity, we will restrict our attention to cases in which the interstitial fluid is of
the same density as the ambient fluid, although the case of different densities can be
tackled as well with the simulation approach we adopt (for experimental work in this
field, see e.g. Sparks et al. 1993; Maxworthy 1999). Special attention will be devoted
here to the long-term evolution of the mixing between ambient fluid and interstitial
fluid. This is of interest, for example, if the latter is contaminated with a passive
substance, which can continue to spread in the flow domain for times much longer
than the finite lifetime of the particulate front. The dispersion of the contaminants will
be monitored and quantified by means of passive marker particles that are tracked in
the flow field.

Finally, the third point to be investigated here refers to the role that the initial level
of turbulence in the suspension reservoir plays for the flow development. While the
ambient fluid may be almost quiescent in many applications, the suspension is often
in turbulent motion at the outset of a gravity-driven particulate flow. Specifically, our
study is motivated by the fact that the suspension is normally in a highly turbulent
state in laboratory experiments on lock-exchange particulate gravity currents, where
the fluid is stirred before the release in order to have all particles evenly distributed
in the suspension (see e.g. Gladstone, Phillips & Sparks 1998). To date, simplified
dispersion models of particulate gravity currents do not take the initial flow state
within the suspension into account; however, as of now, there is no evidence that this
flow state can indeed be safely neglected.

Before we turn to the discussion of our computational results, the governing
equations together with the numerical approach adopted are briefly outlined in
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the following section. Subsequently, the general structure of particulate fronts is
discussed, as these are obtained from three-dimensional simulations of lock-exchange
and deeply-submerged flows. In § 4, we will examine the energy budget of the flow,
and discuss in detail the losses due to particle sedimentation and viscous dissipation
in the velocity field. Section 5 is then devoted to the qualitative and quantitative
analysis of the mixing of ambient fluid and interstitial fluid. Finally, the role of initial
turbulence will be discussed in § 6, before we summarize our main findings in § 7.

2. Numerical approach
We concentrate on dilute incompressible fluid flows laden with small monodisperse

particles whose density ρ̃p is significantly higher than the constant density of the fluid
ρ̃ (a tilde denotes a dimensional quantity here). The dispersed phase is assumed to
be sufficiently dilute to have a negligible volume fraction c̃ � 1, so that the two-way
coupling between the fluid and the particles will be caused primarily through the
momentum equation, and the effect of the particles can be neglected in the continuity
equation. The small volume fraction of the dispersed particles furthermore allows us
to neglect interactions among the particles, such as hindered settling. In addition, the
particles are assumed to have an aerodynamic response time that is much smaller
than typical fluid flow time scales. Hence, the particle velocity is given by the sum
of the fluid velocity and the constant settling velocity. Since the fluid velocity field
is divergence free and the settling velocity is constant, the particle velocity field is
solenoidal as well, and particles will not accumulate anywhere in the flow field.

Under the above conditions of negligible particle inertia and volume fraction, the
mathematical description of the particulate phase is most easily accomplished by
an Eulerian transport equation for the local particle number density. In order to
describe the motion of the fluid phase, the incompressible Navier–Stokes equations
for a constant-density fluid are employed, augmented by a forcing term that accounts
for two-way coupling, i.e. for the force that the particles exert on the carrier fluid.

In order to render the equations dimensionless, we use L̃s
3/2 as the characteristic

length scale (see figure 1). As the characteristic velocity scale, the buoyancy velocity
ũb is employed

ũb =

√
g̃′L̃s

3/2, (2.1)

where g̃′ is the reduced acceleration due to gravity

g̃′ =
π(ρ̃p − ρ̃)c̃0d̃

3
p

6ρ̃
g̃ (2.2)

and c̃0 is the initial (uniform) particle concentration in the suspension. In dimensionless
form the governing equations thus read

∂ul

∂xl

= 0, (2.3)

∂ui

∂t
+ ul

∂ui

∂xl

= − ∂p

∂xi

+
1√
Gr

∂2ui

∂xl∂xl

+ ce
g
i , (2.4)

∂c

∂t
+

(
ul + use

g
l

) ∂c

∂xl

=
1√

Sc2Gr

∂2c

∂xl∂xl

, (2.5)

where ui is the velocity vector and c = c̃/c̃0 the dimensionless particle concentration.
eg = (0, 0, −1) is the vector pointing in the direction of gravity and p is the
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dimensionless pressure p = p̃/ρ̃ũ2
b. The diffusion term on the right-hand side of (2.5),

which, as explained below, is kept small in the numerical simulations, has been
included primarily in order to avoid the formation of discontinuities in the particle
concentration field. However, there is a physical motivation as well, as this small
amount of diffusion can mimic the fact that sharp concentration interfaces in parti-
culate suspensions usually spread with time. This spreading may be caused by such
effects as the hydrodynamic diffusion of particles, or slight imperfections in the
monodispersivity of the suspension. The details of this diffusion-like spreading of the
interface depend on the situation considered, and we have not attempted here to
match the diffusion term to a particular experiment or application.

A few comments are in order regarding the derivation of the above momentum
equation. We start from a general form that accounts for volume fraction effects in
the momentum equation for the suspension

[(1 − c̃)ρ̃ + c̃ρ̃p]

(
∂ũi

∂ t̃
+ ũl

∂ũi

∂x̃l

)
= − ∂p̃

∂x̃i

+ µ̃
∂2ũi

∂x̃l∂x̃l

+ c̃(ρ̃p − ρ̃)g̃i . (2.6)

Slightly rewritten, we obtain

ρ̃

(
1 + c̃

ρ̃p − ρ̃

ρ̃

)(
∂ũi

∂ t̃
+ ũl

∂ũi

∂x̃l

)
= − ∂p̃

∂x̃i

+ µ̃
∂2ũi

∂x̃l∂x̃l

+ ρ̃c̃
ρ̃p − ρ̃

ρ̃
g̃i . (2.7)

Note that for systems of interest in the present investigation, such as sand in water,
the quantity (ρ̃p − ρ̃)/ρ̃ is O(1), so that c̃(ρ̃p − ρ̃)/ρ̃ � 1. Hence, the increased density
component of the acceleration term on the left-hand side is much smaller than the
leading-order constant-density component, and we can neglect it. This corresponds
to the frequently applied Boussinesq approximation for flows with small fluid density
variations.

It may be of interest to compare the relative magnitudes of this neglected density
increase term and the viscous term, which will be retained in the simulation. Clearly,
acceleration scales as

ũ2
b

/
L̃s

3 ∼ g̃′ = c̃
ρ̃p − ρ̃

ρ̃
g̃, (2.8)

so that the neglected density increase component of the acceleration term scales as

ρ̃c̃2

(
ρ̃p − ρ̃

ρ̃

)2

g̃. (2.9)

Regarding the viscous term, a formal analysis with

µ̃
∂2ũi

∂x̃l∂x̃l

∼ µ̃
ũb

L̃s2
3

, (2.10)

would suggest that for the neglected density increase term to be much smaller than
the viscous term, the following must hold,

c̃
ρ̃p − ρ̃

ρ̃
� 1√

Gr
. (2.11)

However, this conclusion is misleading, since there is significant shear in the boundary
and mixing layers of the flow, where velocity variations on the scale of ũb occur over
length scales much smaller than L̃s

3. Hence, accumulated over space and time, this
term can make a contribution that is larger than suggested by the above scaling
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argument. Consequently, we will establish the order of magnitude of the viscous term
a posteriori (cf. below).

One way to perform this a posteriori check is to multiply the momentum equation
by ũi in order to obtain the kinetic energy equation, and to compare the volume
and time integrals of the individual terms in this equation. This will be done below,
and it will show that the dissipated energy is of the same order as the kinetic energy
associated with the constant-density term. From this we can conclude a posteriori
that the neglected variable-density term is much smaller than the viscous term. This
justifies neglecting the variable-density component of the Lagrangian acceleration
term, while retaining the viscous term.

Independently of the above argument, the viscous term, of course, always has to be
retained in a direct numerical simulation of turbulent flow, as it determines the size
of the smallest scales in the flow.

Three dimensionless parameters appear in (2.3)–(2.5), namely the Grashof number
Gr, the Schmidt number Sc, and the dimensionless settling velocity of the particles us ,

Gr =

(
ũbL̃

s
3/2

ν̃

)2

, (2.12)

Sc =
ν̃

κ̃
, (2.13)

us =
ũs

ũb

, (2.14)

with ν̃ being the kinematic viscosity of the fluid, and κ̃ indicating the diffusivity of
the particle concentration field. The Grashof number represents the ratio of buoyancy
forces and viscous forces in the fluid. The Schmidt number is the ratio of the diffusivi-
ties in the velocity and the concentration field, and it is generally set to unity here.
In general, there may be many reasons why the particle path may differ slightly from
the path of a fluid element. Among these are, for example, particle geometry, particle
inertia and Brownian motion. These microscopic effects, which can vary substantially
from one application to another, are lumped together into an effective particle diffu-
sion for the purpose of the present simulations. In order to obtain information on the
influence of the Schmidt number in these simulations, we carried out a number of
test calculations for different values of Sc. We found that the resulting flow is nearly
independent of Sc, as long as Sc is not much smaller than one. For this reason, setting
Sc= 1 in the current simulations represents an assumption that does not limit the
general applicability of the results. Finally, the dimensionless velocity us quantifies
the relative importance of particle sedimentation. It is computed from the buoyancy
velocity and the settling speed ũs . The latter can be determined by balancing the
gravitational forces with the Stokes drag of a single free-falling sphere. The larger
the value of us , the earlier the flow will deviate from a density-driven gravity current,
which corresponds to the case us = 0.

The numerical integration of the governing equations in the flow domain sketched in
figure 1 is accomplished by a numerical scheme based on spectral and spectral-element
discretizations in space, along with finite differences in time. A detailed description
of the computational technique, along with a validation study and comparisons with
experimental data, can be found in Härtel et al. (1997, 2000a) and Necker et al. (2002).
In x1 and x2, the boundaries of the flow domain are treated as symmetry planes for
both velocity and concentration. At the top and bottom of the computational domain,
no-slip walls are prescribed in the simulations, i.e. ui =0. For the concentration field,
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we use a no-flux boundary condition at the top boundary, which ensures that no
particulate matter is transported across that plane. This is achieved by imposing

usc − 1√
Sc2Gr

∂c

∂x3

= 0 at x3 = L3. (2.15)

On the other hand, at the bottom of the channel, it is assumed that the particles leave
the flow owing to sedimentation. Numerically, this is accomplished by an ‘outflow’
boundary condition, i.e. a convective boundary condition with the settling speed taken
as the characteristic velocity. Thus, we prescribe at the lower boundary

∂c

∂t
= us

∂c

∂x3

at x3 = 0. (2.16)

Clearly, the applicability of this approach requires that no resuspension of particles
back into the flow occurs. Over the range of Grashof numbers considered in this
investigation, appreciable resuspension of particles is unlikely to occur (cf. Necker
et al. 2002).

3. Structure of the front
Before we turn to a detailed discussion of the energy budget and the mixing

properties of the flow, we will give an impression of the structure of a particle-driven
front as obtained from the three-dimensional simulations. In figures 2(a) and 2(b),
surfaces of constant particle concentration are depicted for a lock-exchange flow at a
Grashof number of 5 × 106 and a dimensionless settling velocity of us = 0.02. These
values are typical for a range of more recent experiments (see e.g. Bonnecaze et al.
1993; de Rooij & Dalziel 1998). The flow domain in the simulation has a lateral size
of L2 = 2. In the initial stage of the flow, the length L1 was set to L1 = 18, and for
the numerical discretization N1 × N2 × N3 = 1440 × 200 × 221 grid points were used.
The initial length of the domain is about 2 units more than the final run-out length
of the front, which ensures that the propagating current is not affected by the end
boundary in the downstream direction (cf. Härtel 2001). For the study of mixing in the
later stages of the flow, however, the length of the channel was successively extended
to L1 = 23. Initially, the suspension part was confined to a subvolume of aspect
ratio Ls

1/L
s
3 = 1/2, which is identical to the initial set-up used in the experiments of

Bonnecaze et al. (1993), Dade & Huppert (1995), Gladstone et al. (1998) and
Hallworth et al. (1996). As initial condition, fluid at rest was prescribed, but in order
to enhance the breakdown of the flow into a three-dimensional state after the release,
weak turbulent disturbances in the velocity field were superimposed in the neighbour-
hood of the interface at time t = 0. This turbulence field has kinetic energy of about
0.5 % of the initial potential energy and was obtained from a separate simulation of de-
caying turbulence conducted in a very short computational domain of length L1 = 0.2.

Upon release of the suspension, a front forms, which travels along the lower wall
under the influence of gravity (cf. figure 2b). Readily seen from the figure is the
pronounced head of the front, which is of particular interest as far as the mixing
of ambient fluid into the front is concerned (cf. Hallworth et al. 1996). Once the
front is fully developed, the head features the characteristic lobe-and-cleft instability,
which can be better seen in the close-up in figure 2(c). The lobe-and-cleft structure is
accompanied by an intense three-dimensionality in the flow (cf. Simpson 1972; Härtel
et al. 2000b) which leads to strong spanwise variations in the concentration field at
the leading edge. Moreover, the concentration field underneath the current features
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Figure 2. Structure of a particle-driven gravity current. Results obtained from a three-
dimensional simulation with Gr =5 × 106 and us = 0.02. (a)–(c) Surfaces of concentration
at t = 0, t =8, and a close-up of the foremost part of the front at t = 8, respectively. In all
cases, a concentration value of 0.5 is plotted. Also included in (c) are contours of concentration
in the back plane, and in the (x2, x3)-plane at x1 = 4. (d) Integral lines of the (u2, u3) vector
field evaluated in the (x2, x3)-plane at x1 = 4 and t = 8. The local values of streamwise velocity
are indicated by a grey scale. Black, u1 = −0.38; white, u1 = 0.65.

a streaky structure. The flow field above these longitudinal streaks is characterized
by pairs of counter-rotating vortices (see also Allen 1971), which are illustrated in
figure 2(d) by means of sectional streamlines computed from the velocity components
u2 and u3 in a selected (x2, x3)-plane. These longitudinal vortices enable the current
to entrain the near-wall layer of light fluid that is overrun by the propagating head.
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Figure 3. Structure of a deeply submerged particulate front for Gr = 5 × 106 and us = 0.02,
visualized by a surface of particle concentration at t =10. Contour value set to 0.25.
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Figure 4. Contours of spanwise-averaged particle concentration. Same flow as in figure 3.

The typical features of a deeply submerged particulate gravity current can be
recognized from figures 3 and 4. The flow develops from a reservoir of dimensionless
size Ls

1 × Ls
2 × Ls

3 = 6 × 2 × 2, and the height of the suspension layer is one-tenth
the total channel height (L3 = 20). Note that the length of the reservoir must be
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Figure 5. (a) Front position xf (t) and mass mp(t) of suspended particles (normalized with

the initial mass mp0) for Gr= 5 × 106. Solid lines, results for the flow shown in figure 3 with
us = 0.02; dashed line, two-dimensional result for density-driven gravity current. (b) Temporal
evolution of maximum streamwise velocity u1,max (solid line). The dashed and dot-dashed lines
denote, respectively, the maximum spanwise and vertical velocity u2,max and u3,max , normalized
by u1,max .

several times its height in order to capture a typical feature of a deeply submerged
current, namely sub- and supercritical flow state to the left and right of the initial
front position, respectively. The Grashof number of the flow is 1.25 × 106, and the
settling velocity is maintained at us = 0.02. At the foremost part of the front, a similar
structure develops as in the lock-exchange case, with strong interfacial vortices and
a lobe-and-cleft instability acting at the leading edge. However, the fluid within the
reservoir to the left of the initial vertical interface flows out smoothly without mixing
with the ambient. This behaviour is also observed in laboratory experiments on deeply
submerged density-driven fronts (see Rottman & Simpson 1983). The concentration
fields in figure 4 indicate that the front propagates at constant speed during the
early flow stages. To make this more evident, the temporal evolution of the front
position xf is plotted in figure 5(a), together with the time history of the mass of
suspended material. Here, and in what follows, mp is defined as the volume integral
of non-dimensional particle concentration, i.e.

mp(t) =

∫
Ω

c dV. (3.1)

It can be seen from figure 5 that the front speed uf = dxf /dt is constant initially,
taking a value of uf ≈ 0.78. This is clearly smaller than the maximum streamwise
velocity which is found within the front (cf. figure 5b). After about t = 20, when some
50 % of all particles have settled, the front speed continuously decays. Note that this
is also the time when the speed of the particulate front starts to deviate more strongly
from the speed of a density-driven gravity current. Eventually, the front comes to rest
at a run-out length of about xf = 45.

Figure 6 gives the time history of the sedimentation rate ṁs for the deeply submerged
flow, which is defined here as the time derivative of the total mass ms of sedimented
particles per unit span

ṁs(t) =
dms(t)

dt
=

1

L2

∫ L1

0

∫ L2

0

cw(x1, x2, t)us dx2 dx1, (3.2)

where cw = c(x3 = 0) is the concentration at the bottom wall. Taking a value of 0.12 at
time t = 0, ṁs steadily increases during the first time units. The reason is that, initially,



Mixing and dissipation in particle-driven gravity currents 349

10–6

100 101 102 103

10–4

10–2

100

102

0 20 40
0

0.02

0.04

0.06
(a) (b)

ṁs
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Figure 6. (a) Sedimentation rate ṁs of the deeply submerged current at the bottom wall as
function of time for Gr= 5 × 106 and us = 0.02. Estimate ṁ∗

s (see text) calculated with a front
speed of uf = 0.78. (b) Non-dimensional particle deposit Dt as function of x1 for five different
times. The curve for t = ∞ gives the final distribution after all particles have settled.

the current stretches out while remaining almost undiluted. An estimate ṁ∗
s for the

sedimentation rate at early times can therefore be obtained by setting Lc =Ls
1 + uf t

for the length Lc of the front. This yields

ṁ∗
s (t) =

(
Ls

1 + uf t
)
us. (3.3)

The curve ṁ∗
s , calculated with uf =0.78, is included in figure 6, and close agreement

with the actual sedimentation rate is observed until t ≈ 20. Subsequently, an abrupt
change in the sedimentation rate occurs. It leads to a rapid decay of ṁs with time,
following a power law ṁs ∼ tn with n= −3.5. Note that for the lock-exchange flow a
power law with a much smaller exponent of n= −2.4 is observed (see Necker et al.
2002). We remark here that the linear growth ṁ∗

s , observed during the first 20 time
units, lends support to the concept of a ‘laminar’ settling process (see Ungarish &
Huppert 1998) as opposed to a thorough turbulent mixing of the suspended matter
across the front height. When laminar settling prevails, the particle density in the
suspension remains essentially unchanged, (cf. figure 4) while the upper interface
between suspension and clear fluid slowly drops in height. From the present data, we
conclude that a laminar settling process is appropriate in the initial stage of a deeply
submerged gravity current. On the other hand, we found no such behaviour in the
lock-exchange simulations, especially when the initial lock length is relatively small.

The settling of particles produces a sediment layer at the bottom of the tank, which
is non-uniform in the streamwise direction. This is shown in figure 6(b), where a mean
deposit Dt per unit span (cf. Necker et al. 2002) is plotted. In the initial reservoir
(x1 < 0), the sediment layer grows almost linearly during the first 20 time units. After
all particles have settled (t → ∞), the largest values in Dt are encountered in this
region. This is markedly different from what is found with lock-exchange flows, where
a distinct maximum develops downstream of the initial lock (see Bonnecaze et al.
1993; Necker et al. 2002).

For deeply submerged particulate fronts, no experimental data are available for
comparison. However, given the small differences in the front speed of particulate
and density-driven currents during the first few time units, a comparison with the
front speed measurements of Rottman & Simpson (1983) can be undertaken. From
the present results, and the data presented in Necker et al. (2002), we find that for
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the case L3/L
s
3 = 10, the front speed is 1.36 times the front speed of a lock-exchange

current. This is in close agreement with the findings of Rottman & Simpson (1983),
who report values between 1.32 and 1.45 for the same length ratio. The reason for
choosing the ratio of front speeds here for comparison, rather than the absolute values
of uf , is that the front speed of gravity currents to some extent depends somewhat
on Gr (see Härtel et al. 2000a), so that the influence of deep submersion should be
evaluated for constant Gr. Since viscous effects are similar in lock-exchange flows and
deeply submerged currents, Gr dependencies can be partially compensated for if the
ratio of uf is taken.

4. Energy budget of the flow
In essence, any gravity-driven flow can be understood as a conversion of potential

energy into kinetic energy, i.e. fluid motion, which subsequently is dissipated into
heat by viscous friction. In density-driven gravity currents, dissipation is caused by
gradients in the macroscopic ‘convective’ velocity field only, but in particle-driven
gravity currents, dissipative losses also occur in the microscopic Stokes flow around
each particle. In order to examine the temporal evolution of the different energy
components, the budget equations for the kinetic and potential energy must be
considered. The equation for the time derivative of the kinetic energy of the fluid is
obtained from multiplication of the momentum budget (2.4) by ui , which yields

D

Dt

(
1
2
uiui

)
= − ∂

∂xi

(pui) +
1√
Gr

∂

∂xj

(sijui) − 2√
Gr

sij sij − u3c, (4.1)

where D/Dt indicates the material derivative, and sij denotes the rate-of-strain tensor

sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (4.2)

Integration of (4.1) over the entire flow domain Ω gives an equation for the temporal
evolution of the total kinetic energy k, which is the quantity we will consider here

dk

dt
= −

∫
Ω

2√
Gr

sij sij dV −
∫

Ω

u3c dV , (4.3)

where

k(t) =

∫
Ω

1
2
uiui dV. (4.4)

Note that the first two terms on the right-hand side of (4.1) are divergence terms
which, in the present case, vanish after integration over Ω (see Necker et al. 2002). The
validity of equation (4.3) for particulate flows requires that the slip between particles
and flow is significant in the gravitational direction only, which is the case for the
parameters considered in the present study. In more general situations, the energy
budget will feature further source terms stemming from frictional forces between
particles and carrier fluid in all spatial directions.

The potential energy in the system is obtained from the integral

Ep(t) =

∫
Ω

c x3 dV, (4.5)
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and its time derivative is given by

dEp

dt
=

∫
Ω

D(c x3)

Dt
dV =

∫
Ω

u3c dV +

∫
Ω

x3

Dc

Dt
dV. (4.6)

The second term on the right-hand side of (4.6) can be rewritten by means of the
transport equation, (2.5). For simplicity, we neglect here the effects that diffusion in
the concentration field has on the potential energy (see Winters et al. 1995 for a
discussion of such effects), and thus arrive at the following equation for Ep:

d

dt
Ep =

∫
Ω

u3c dV +

∫
Ω

x3us

∂c

∂x3

dV. (4.7)

Summing (4.3) and (4.7), and taking into account that no change in potential energy
occurs due to transport across domain boundaries (see Necker et al. 2002), we find
for d/dt(k + Ep), i.e. for the change of total mechanical energy with time,

d

dt
(k + Ep) = −

∫
Ω

2√
Gr

sij sij dV −
∫

Ω

usc dV (4.8)

= −ε − εs, (4.9)

where

ε =

∫
Ω

2√
Gr

sij sij dV, (4.10)

εs =

∫
Ω

usc dV . (4.11)

Note that with the present approach, the kinetic energy of the particulate phase does
not show up in the equation of total energy. This is because we only consider flows
where g′ is much smaller than g, meaning that the mass of the particulate phase
can be neglected in the overall balance of kinetic energy. The two integrals ε and εs

represent the losses in mechanical energy due to macroscopic convective fluid motion
and microscopic Stokes flow around particles, respectively. In order to evaluate the
latter, only the concentration field and the settling speed us need be known. Since us

is constant, and the volume integral of the particle concentration is identical to the
instantaneous mass of suspended matter, εs can also be written as

εs(t) = usmp(t). (4.12)

Note that, with the continuous description of the particulate phase employed here,
the fundamental difference between these two contributions to the total dissipation is
readily recognized: while εs acts as a sink of potential energy, ε represents a sink of
kinetic energy.

Integrating (4.9) with respect to time yields

k + Ep + Ed + Es = const. = k0 + Ep0, (4.13)

with Ep0 being the initial potential energy, k0 the initial kinetic energy, and Ed and
Es the time integrals of the dissipation components, i.e.

Ed(t) =

∫ t

0

ε(τ ) dτ, (4.14)

Es(t) =

∫ t

0

εs(τ ) dτ = us

∫ t

0

mp(τ ) dτ . (4.15)
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Figure 7. (a) Time history of potential energy Ep and kinetic energy k. (b) Time history of
the dissipation components Ed and Es . In both graphs, solid lines show the results for the
lock-exchange flow depicted in figure 2; dashed lines show the results for a density-driven
gravity current (us =0) developing from the same initial set-up. The dot-dashed line in
(a) gives the sum of Ep , k, Ed and Es for the particle-driven flow. Gr = 5 × 106.

The time history of the four terms on the left-hand side of (4.13), as obtained from
the lock-exchange simulation shown in figure 2, is given in figure 7. To demonstrate
that the effects of diffusion are indeed negligibly small, we have included the sum of
all four terms which is denoted as Et in the figure. It is seen that Et is approximately
constant, as required by overall energy conservation. We wish to point out that the
slight variations of Et are primarily caused by the limited accuracy of the first-order
time integration scheme we employed for computing Ed and Es from the instantaneous
dissipation rates ε and εs , respectively.

As seen from figure 7, the first 2–3 time units of the flow are dominated by a
fast conversion of potential energy into convective motion, which causes Ep to drop
by almost 70 %. However, even though the potential energy continues to decrease
during the further evolution of the flow, the kinetic energy, after having reached a
maximum at t ≈ 5, also starts to decay, reflecting the strongly increasing influence
of dissipation. During the initial stages, the dissipative losses are clearly dominated
by particle settling, but the macroscopic dissipation Ed overtakes Es once the front
reaches a fully turbulent state. It can be inferred from figure 7 that this causes a
strong increase of the dissipation rate ε by a factor of about two. At times much
later than those shown in the figure, both k and Ep tend to zero. On the other hand,
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Ed and Es approach final values that indicate, respectively, how much of the initially
available potential energy was dissipated by macroscopic fluid motion, and how much
was dissipated by settling. For the present case, we find that sedimentation accounts
for a ‘loss’ of more than 40 % of Ep0 which, hence, is not available for convective
transport and turbulent mixing. This must be contrasted with a density-driven flow
(us =0), where no losses due to sedimentation occur.

For direct comparison of the energy budget of a particle-driven and a density-
driven gravity current, we include in figure 7 the results for a density-driven flow with
the same Grashof number and the identical initial set-up. Comparing the respective
curves shows that the density-driven front exhibits larger values of potential energy
throughout the simulation. Especially after t = 10, when the frontal speed of the
particle-driven current becomes increasingly affected by sedimentation, relatively large
differences are seen. The fact that Ep is generally smaller in the particle-driven case
can be understood from the fact that sedimentation leads to an additional decrease
in the elevation of the centre of mass of the dense phase. Figure 7 also reveals that, at
identical non-dimensional times, a density-driven flow contains more kinetic energy
than a particle-driven current. For example, at t = 30 the difference amounts to about
50 % of the kinetic energy in the density-driven flow. Note that these higher levels of
kinetic energy are associated with larger values of the viscous dissipation Ed .

The amount of potential energy lost by sedimentation depends not only on the set-
tling velocity, but also on the initial set-up. More specifically, it depends on the
aspect ratio Ls

1/L
s
3 of the initial reservoir filled with suspension. The influence of the

aspect ratio is probably best understood from considering the case of a very long
reservoir (Ls

1/L
s
3 
 1), where the developing convective motion influences a relatively

small fraction of the reservoir only, leaving a large portion of the channel almost
unaffected for long times. Particle settling in that part of the reservoir where little
or no macroscopic fluid motion exists, will then dominate the losses in potential
energy. The potential energy loss of the particles due to the slumping of the front will
be relatively small by comparison. In fact, in the limiting case of an infinitely long
reservoir, Es/Ep0 tends to unity.

To illustrate how Es depends on both the initial aspect ratio of the reservoir and
the settling velocity, we have evaluated the final amount of the energy losses due
to particle settling from a series of two-dimensional lock-exchange simulations. This
final amount is denoted as E∗

s here, that is

E∗
s = lim

t→∞
Es(t), (4.16)

and the results are shown in figures 8 and 9. It is seen that, as expected, E∗
s increases

with increasing aspect ratio, but the increase is rather weak. Also, Es depends little
on the settling velocity, at least between us = 0.002 and 0.02. Clearly, for sufficiently
small values of the settling velocity, a particle-driven front closely resembles a density-
driven front, which means that E∗

s has to approach zero for us → 0. However, figures 8
and 9 demonstrate that already for a settling speed of the order of 10−2, which
is representative for many environmental applications (see e.g. Mohrig, Elverhøi &
Parker 1999), the energy budget of a particle-driven gravity current differs funda-
mentally from the energy budget of a density-driven front. Even for settling speeds as
small as 10−3, a significant amount of potential energy will be lost owing to continued
sedimentation.

Comparing figure 8 with the result obtained from the three-dimensional lock-
exchange simulation reveals that two-dimensional simulations tend to overestimate E∗

s .
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Figure 8. Final amount E∗
s of energy dissipated owing to particle settling (see (4.16)), as a

function of the aspect ratio Ls
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3 of the reservoir initially filled with suspension. Results

obtained from two-dimensional simulations for different settling velocities of us = 0.01 (�) and
us = 0.02 (�), respectively. Gr = 5 × 106.
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Figure 9. Final amount E∗
s of energy dissipated owing to particle settling (see (4.16)), as a

function of the settling velocity us . Results obtained from two-dimensional simulations with
an aspect ratio of the initial reservoir Ls

1/L
s
3 = 0.5 and Gr = 5 × 106.

For us = 0.02, E∗
s /Ep0 is about 0.54 in the two-dimensional case, while a 25 % smaller

value is computed from the three-dimensional simulation. Similarly, the respective
result for the three-dimensional deeply-submerged flow is about 20 % smaller than
corresponding result for the two-dimensional lock-exchange flow at Ls

s/L
s
3 = 3 given

in figure 8. This difference can be understood from the fact that two-dimensional flows
develops large-scale vortices, which mix the flow in the vertical direction with little
viscous dissipation. In this mixing, however, energy required to lift the particulate
phase must be taken from the fluid motion, which causes enhanced sedimentation
losses.
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4.1. Spatial distribution of dissipation

The results presented previously show that, over a wide range of aspect ratios and
settling speeds, about half of the initial potential energy in the system is dissipated
by macroscopic fluid motion, while the Stokes flow around the sedimenting particles
accounts for the rest of the dissipative losses. In theoretical models of particulate
gravity currents, both dissipation components must be accounted for if the global
energy balance is to be represented properly. Generally speaking, capturing Es does
not require the detailed flow field to be known, since the losses due to particle settling
can be determined if the global sedimentation rate is correctly computed. On the other
hand, the turbulent dissipation due to macroscopic velocity gradients, i.e. Ed , must be
accounted for by additional closure assumptions, if the model does not resolve the
flow field in its details. To derive and validate closures, knowledge of the spatial and
temporal variation of the dissipation rate ε is required in order to help to identify
both the regions where dissipation is most intense, and the flow structures which are
associated with large dissipative losses. So far, no results on local or global dissipation
rates have been available from the literature, because ε is virtually inaccessible to
laboratory measurements.

An important mechanism of dissipation in gravity currents is wave breaking behind
the head of the front (cf. Bonnecaze et al. 1993). In simplified models, the head loss is
typically accounted for by adjusting the Froude number of the current, which is the
boundary condition used for the velocity at the head (see e.g. Huppert & Simpson
1980), but dissipative losses downstream of the head are not considered. To see how
the losses along the current compare with the loss at the head, we evaluated the
integral over ε in (x2, x3)-planes for the lock-exchange simulation. This quantity is
denoted as εi23 here, i.e.

εi23(x1) ≡
∫ L3

0

∫ L2

0

ε(x1, x2, x3) dx2 dx3. (4.17)

The streamwise variation of εi23 at time t = 10 is depicted in figure 10, together with
contours of the spanwise averaged concentration field at the same time. Except for
the rear part (x1 < 2) where, after the reflection of the light fluid at the left wall,
motion has largely ceased, dissipation is seen to occur over the full length of the
current, with maximum values twice as high as near the head.

Usually, regions of large dissipation in the flow coincide with regions of large
velocity gradients, which are encountered both in the mixing region in the interior of
the channel and in the thin boundary layers. The relative importance of dissipative
losses in these regions of the flow can be examined by integrating ε over length and
width of the channel. This integral, denoted as εi12

εi12(x3) ≡
∫ L2

0

∫ L1

0

ε(x1, x2, x3) dx1 dx2, (4.18)

is depicted in figure 11, again for time t = 10. It is seen that the fluid motion at the
interface between ambient fluid and suspension is responsible for the bulk of the
dissipative losses, although the maximum of εi12 is located in the boundary layer at
the lower wall. To better quantify the contribution of the boundary layer to the total
dissipation in the flow, we have integrated εi12 with respect to x3 and the respective
integral εi12′

εi12′
(x3) ≡

∫ x3

0

εi12(x3
′) dx3

′ (4.19)
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Figure 10. Streamwise distribution of viscous dissipation for Gr= 5 × 106 and us = 0.02.
Shown is the integral εi23 over ε according to (4.17). (a) Contours of the spanwise-averaged
particle concentration field. The results are obtained from the simulation shown in figure 2 at
time t = 10, a time instant which features very high dissipation rates.

is included in figure 11. Although the boundary layer at the bottom is thin, it gives an
appreciable contribution to the dissipative losses, as can be inferred from the rapid
increase of εi12′

near x3 = 0. The region x3 ∈ [0, 0.1], which accounts for only 5 % of
the full channel height, contains approximately 15 % of the total dissipation. Clearly,
these large values of dissipation in the near-wall zone are almost exclusively caused
by the large gradients of u1 in the normal direction x3. In order to illustrate this, we
have evaluated the contribution εi12

13 of the component s13 of the rate-of-strain tensor
to the integrated dissipation εi12

εi12
13 (x3) ≡

∫ L2

0

∫ L1

0

2√
Gr

(s13s13 + s31s31) dx1 dx2, (4.20)

with the result included in figure 11. It is seen that εi12
13 and εi12 are virtually identical

in the vicinity of x3 = 0. Taking into account that ∂u3/∂x1 is negligible here, this
result demonstrates the dominant role that ∂u1/∂x3 plays for the dissipation in the
boundary layer.

5. Mixing of interstitial fluid and ambient fluid
Concerning mixing and dispersion in particulate flows, most of the work so far

has focused on examining the dispersion of the particulate matter driving the flow.
However, the spreading of the interstitial fluid, which is the fluid that initially carries
the particles, becomes of interest too, if this fluid differs from the ambient fluid in
density or composition. In the present study, we are dealing exclusively with the case
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Figure 11. Vertical distribution of viscous dissipation for Gr= 5 × 106 and us = 0.02.
(a) Integrals εi12 and εi12

13 of ε according to (4.18) and (4.20) (solid and dashed line, respectively).

(b) Integral εi12′
of ε according to (4.19). Same time instant as in figure 10.

in which the interstitial fluid is of the same density as the ambient fluid, but it is
assumed to contain some passive contaminant. At early times, the dispersion of the
interstitial fluid follows the spreading gravity current; however, owing to continual
settling, particles and interstitial fluid segregate with time. While the particles collect
at the bottom of the channel, the interstitial fluid together with the contaminant is
being mixed with the ambient fluid by the vortical motion produced at the front.
This mixing occurs to some extent already during the early stages of the flow, but it
becomes more pronounced during the later flow development, when the stratification
in the channel diminishes quickly. Note that even after all particles have settled out,
i.e. after the motive force has completely disappeared, the flow has not yet come
to rest. The kinetic energy available by that time will eventually decay by viscous
dissipation, but it continues to mix interstitial fluid and ambient fluid for long times.

To investigate qualitatively and quantitatively the mixing process of ambient fluid
and carrier fluid, a diffusion-free Lagrangian approach was chosen to follow the
dispersion of the contaminant. To this end, 32 000 uniformly distributed passive
markers were randomly added to the particle-laden fluid at time t = 0. In contrast to
the heavy particles in the suspension, these markers do not affect the fluid motion.
During the propagation of the gravity current, the markers are transported along the
pathlines of the fluid, so that the distribution of the contaminant can be inferred
from the marker field.

An impression of the progressive mixing of carrier fluid and ambient fluid in
the lock-exchange flow shown in figure 2 can be gained from figure 12 where the
distribution of markers is depicted by side views at selected times. At t = 20 and 40,
the typical shape of a gravity current is still discernible from the markers, even though
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Figure 12. Dispersion of interstitial fluid in a particle-driven gravity current visualized
by passive markers for Gr= 5 × 106 and us = 0.02. Same flow as in figure 2.

at these times a significant amount of particles have already settled. Subsequently, the
cloud of markers slowly spreads out in the vertical direction, indicating a thorough
mixing of carrier and ambient fluid across the full channel height. As pointed out
before, this mixing of carrier and ambient fluid is caused by the remaining fluid
motion after complete sedimentation. For a quantitative assessment of this mixing
process, a local concentration of the contaminant can be defined by means of the local
number density of markers. A straightforward method to transform the distribution
of discrete elements into a smooth concentration field is to count the markers located
in an individual cell of the computational mesh, divide the number obtained by the
cell volume and relate the result to the initial marker density in the suspension. While
this approach is easily implemented, it gives unsatisfactory, highly intermittent results
in regions where the markers are sparsely distributed. Therefore, we have applied a
different method here, which is adopted from the way in which interpolation between
discrete particles and a fixed mesh is accomplished in mixed Eulerian–Lagrangian
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techniques (see e.g. Elghobashi & Truesdell 1993; Meiburg 1995; Maxey et al. 1997;
Meiburg et al. 2000). The key idea is to define a region of influence surrounding each
discrete element. This region of influence must be large enough to cover several mesh
points of the underlying computational grid. Also, the region of influence must be
adjusted to the distance between neighbouring markers in order to avoid the final
concentration distribution becoming uneven and ‘spotty’. In the present study, we
defined the region of influence by using a shape function fk , which is taken as a
clipped Gaussian curve, i.e.

fk(rk) =




1

(
√

πσk)3
exp

[
−

(
rk

σk

)2]
for rk < 3σk,

0 otherwise.

(5.1)

In (5.1), σk is a measure of the width of the Gaussian, and rk = |x − xk| denotes
the distance between a point x and the instantaneous position xk of marker k. The
continuous marker concentration field cm(x) is then obtained by summing up the
contributions of all M individual markers, i.e.

cm(x) =
1

M

M∑
k=1

fk(rk). (5.2)

Note that cm(x) should be defined such that the average marker concentration is
unity within the reservoir at t = 0, which can be achieved by choosing σk properly. In
the present study, the width of the Gaussian curve σk is calculated for each marker
separately, and is taken to be the distance between the marker and its third nearest
neighbour. However, to cope with cases in which a small number of markers are
localized extremely close to each other, a lower limit for σk must be prescribed. In
the present study, this lower limit is taken as the maximum side length ∆ of the mesh
cell surrounding a marker.

With the continuous marker concentration cm, the mixing of the interstitial and
ambient fluid can be quantified by computing the subvolume of the flow domain
where cm ranges between given bounds or where it exceeds a certain threshold value.
The subvolume containing fluid with marker concentrations above a threshold cm,θ

will be denoted as Vm,θ here, and is computed from the following integral

Vm,θ =
1

Ls
1 ∗ Ls

2 ∗ Ls
3

∫
Ω

α dV, (5.3)

where

α = 1, cm � cm,θ ,

α = 0, cm < cm,θ .

Vm,θ is a measure for the increase in volume of the contaminated fluid, as defined
by the threshold, which occurs due to entrainment of ambient fluid. By comparing
results of Vm,θ for different cm,θ , it can be examined how homogeneously the carrier
fluid is distributed within the volume in which mixing occurs. For perfect mixing over
the channel (or part of it), cm is constant in the mixed region, and Vm,θ is constant for
cm,θ � cm and zero for cm,θ > cm, respectively. This situation is encountered at t =0
when the markers are evenly distributed within the initial suspension. Consequently,
Vm,θ is unity for 0 � cm,θ � 1 as can be seen from figure 13. In addition, figure 13
gives results for Vm,θ at four more time instants, which show that the regions
with low concentrations of carrier fluid grow significantly with time. Moreover, the
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Figure 13. Mixing of interstitial fluid and ambient fluid quantified by the volumetric
measure Vm,θ according to (5.3) at times t = 0, 20, 80, 200 and 1000. Same flow as in figure 2.

strongly increasing dependence of Vm,θ on the threshold value cm,θ indicates that the
inhomogeneities in the local concentrations of carrier fluid become more pronounced
with time. Note that this inhomogeneity is also recognized from a visual examination
of the marker field in figure 12, where at t =1000 the marker distribution to the left
appears much more sparse than to the right.

5.1. Influence of settling velocity

The vertical mixing of interstitial fluid and ambient fluid depends on both the amount
of kinetic energy k in the fluid and the vertical stratification due to remaining particles
which have not yet settled. Given that k continuously decreases after the start-up
phase of the flow (see § 4), it can be expected that mixing will be reduced if the settling
speed is reduced, since in this case the stabilizing density stratification is maintained
for much longer times. To examine the influence of us on the mixing of ambient and
interstitial fluid, figure 14 shows the marker distribution at t = 1000 of lock-exchange
gravity currents with different settling velocities. In the density-driven case (us = 0),
for which no sedimentation occurs, the heavy fluid containing the markers eventually
collects in the neighbourhood of the bottom wall. Note that density-driven fronts have
no final run-out length, and therefore the final thickness of this bottom layer of heavy
fluid depends on the total length L1 of the channel. In contrast, the propagation
of particulate fronts comes to an end after all particles have sedimented and the
difference in density, which drives the current, has vanished. However, as discussed in
the previous section, fluid motion continuing beyond complete sedimentation causes
ongoing mixing of fluid. From figure 14, it is recognized that the length of the region
in which interstitial fluid is found decreases with increasing settling velocity, which
reflects the fact that fronts with smaller us travel further downstream. On the other
hand, the vertical mixing of carrier fluid and ambient fluid appears to be more
uniform when the settling speed is higher. To assess the distribution of carrier fluid
in the vertical direction, the concentration field is integrated over wall-parallel planes.
This integral ci12

m of the marker concentration over length and width of the channel

ci12
m (x3) ≡ 1

Ls
1L

s
2

∫ L2

0

∫ L1

0

cm dx1 dx2, (5.4)
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Figure 14. Mixing of interstitial fluid, visualized by passive markers. Results for time t =
1000. (a) Two-dimensional simulation of a density-driven flow (us = 0, L1 = 29). (b) Three-
dimensional simulation of a particle-driven flow with us =0.01. (c) Particle-driven flow with
us = 0.02 (same flow as in figure 2). Length and height of the initial reservoir, as well as the
Grashof number, are identical in all simulations.
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Figure 15. Vertical distribution of carrier fluid at time t = 1000 for Gr= 5 × 106. ci12
m represents

the integral of cm over the length and width of the channel according to (5.4). Solid line, same
flow as in figure 2 (us = 0.02); dashed line, simulation with us = 0.01 (all other parameters
identical).

is given in figure 15 as a function of the vertical coordinate at a time when the fluid
has virtually come to rest. While in the case us =0.02 (cf. figure 2) differences in
the marker distribution between lower and upper channel half are relatively small,
a strong asymmetry is seen in the curve for us = 0.01 with a pronounced peak near
the lower wall, which can be inferred already from figure 14(b). The reason for these
differences in the mixing behaviour for different settling speeds can be understood
from a comparison of the respective results for the time history of kinetic energy k

and the mass mp of suspended material, given in figure 16. If we take the mass of
suspended particles as an indicator for the stratification in the flow, mp must have
decreased sufficiently to allow for appreciable mixing in the vertical direction. Taking,
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Figure 16. Temporal evolution of kinetic energy k, according to (4.4), and mass of suspended
material mp . Results normalized with the initial potential energy Ep0 and the initial mass mp0,
respectively. Solid lines, same flow as in figure 2 (us = 0.02); dashed lines, simulation with
us = 0.01 (all other parameters identical).

for example, mp/mp0 = 0.1 as a rough guess for the limit below which stratification
becomes insignificant, we find from figure 16 that enhanced mixing should be observed
after about t = 40 and t = 70 for settling speeds of 0.02 and 0.01, respectively. However,
the curves for k(t) show that the remaining kinetic energy differs by a factor of two in
these cases. Clearly, with more kinetic energy available, the mixing of interstitial and
ambient fluid will be more intense. Note also that the extent of the region available
for mixing is larger in the flow with smaller settling speed, owing to the increased
run-out length of the front.

5.2. Mixing in the deeply submerged case

For the deeply submerged case, the mixing was also studied by the aid of passive
markers. The distribution of the markers as a function of time can be seen from
the side views depicted in figures 17 and 18 for early and late times, respectively.
As for the lock-exchange flow, at early times the marker field resembles the shape
of the propagating current. The pronounced head of the flow, as well as the almost
undisturbed flow structure in the rear part, are clearly recognized from the marker
distribution. The enhanced mixing at late stages, discussed before, sets in after
t = 40, when most particles have settled and the stratification in the fluid has largely
disappeared. At t = 200, markers are already distributed over a layer of thickness
3–4 times the height of the initial reservoir; at t = 1000, markers extend over the full
channel height. At very late times, the vortices causing the mixing in the (x1, x3)-
plane have grown to a length scale much larger than the channel width, leading to
essentially two-dimensional motion. This is clearly recognized from the time history
of the maximum vertical velocity and the maximum spanwise velocity depicted in
figure 5 (note that both are normalized with the maximum streamwise velocity, which
slowly decays with time). The structure of the large vortices is visualized in figure 18(d)
by contours of the spanwise-averaged vorticity. We presume that the mixing in the
very late stages of the flow is influenced by the narrow channel width, which favours
large-scale two-dimensional motion; future simulations in much wider computational
domains must show to what extent this affects the mixing properties of the flow.
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Figure 17. Dispersion of interstitial fluid in a deeply submerged flow for Gr = 5 × 106 and
us = 0.02, visualized by markers (early times).

6. Influence of initial turbulence
In the simulations presented so far, the fluid was generally at rest initially, except

for the weak disturbances superimposed to enhance the breakdown of the flow at the
leading edge. In practice, however, while the ambient fluid may be almost quiescent,
the particle-laden fluid often is in turbulent motion at the onset of the gravity-driven
flow. To examine the effect that such initial turbulence may have on the current,
we performed two further three-dimensional lock-exchange simulations for the same
geometry, Grashof number, and settling speed as the simulation shown in figure 2,
but with turbulent disturbances superimposed to the fluid in the suspension reservoir.
The kinetic energy k0 contained in the flow at time t =0 amounts to 12.5 % and
25 % of Ep0, respectively. In order to obtain a physically realistic turbulent velocity
field, a separate simulation of decaying turbulence was conducted in a domain with
the same dimensions as the reservoir. An impression of this initial turbulence field
can be gained from figure 19, where a surface of the spanwise velocity component is
depicted. To illustrate that the turbulence field has a broad range of excited scales
in all three velocity components, we evaluated the following power density spectra of
the flow

Ei(k2) =

∫ L1

0

∫ L3

0

|ûi(x1, k2, x3)|2 dx3 dx1, (6.1)

where ûi are the coefficients obtained from a spanwise Fourier transformation of the
velocity fields, i.e. (i =

√
−1, α2 = π/L2)

f =
∑

f̂k exp(iα2k2x2), f = ui. (6.2)

The spectra are shown in figure 20. It can be seen that they exhibit a smooth decay
over more than eight decades, from the large energy-containing structures to the
dissipative scales.
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Figure 18. (a)–(c) Dispersion of interstitial fluid in a deeply submerged flow for Gr= 5 × 106

and us = 0.02, visualized by passive markers (late times). (d) Spanwise-averaged vorticity
component ω2 at time t = 1000.

The most obvious effect of initial turbulence observed from our simulations, is that
the mixing of the fluid within the current is strongly enhanced. To make this evident,
we divide the passive markers initially added to the particle-laden fluid into 5 groups,
stacked in the vertical direction (see the sketch in figure 21). During the propagation
of the current, each group of markers is tracked individually. By displaying the
instantaneous position of the markers of each of the five groups separately, the
mixing within the carrier fluid can be assessed. Figure 22 gives the respective results
for the simulation with k0 = 0.125Ep0, where markers are shown that were initially
contained in the top, middle and bottom group. It can be seen that already at time
t = 8, hardly any difference is discernible between the spatial distribution of markers
originating from the different groups, showing that the suspension is well-mixed within
the front. When comparing this result with figure 23, where the respective marker
distribution is shown for the case k0 ≈ 0.0 (cf. figure 2), the strong enhancement of
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Figure 19. Initial turbulence field with a kinetic energy of k0 = 0.25Ep0, visualized by a
surface of spanwise velocity (isovalue set to 0.2).
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Figure 20. Spanwise modal energy (see (6.1)) of the turbulent flow shown in figure 19.
E1 (dot-dashed), E2 (solid), E3 (dotted).

internal mixing due to initial turbulence is obvious. Clearly, even in the case without
initial turbulence, the fluid in the front is progressively mixed by developing turbulent
motion, but on a slower time scale. It takes until about t = 20 before a thorough
mixing within the front is observed in this case.

In contrast to the pronounced effect on the mixing within the front, figures 22
and 23 suggest that initial turbulence has only a minor influence on the overall flow
development. A better impression of the differences in flow structure associated with
different turbulence intensities is gained from figure 24, where, for all three simulations,
contours of the spanwise-averaged concentration field are depicted at two selected
times. It is seen that at t =10, the flow structure is very similar, with some differences
appearing only in the interfacial region. Here, a stronger initial turbulence field leads
to an earlier breakdown of the coherent vortices, which are continuously shed from
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Figure 21. Subdivision of the initial volume of suspension into five subvolumes. The markers
contained in each subvolume are considered as separate groups to examine the mixing within
the front.
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Figure 22. Distribution of passive markers illustrating the dispersion of interstitial fluid
initially located in (i) subvolume 1, (ii) subvolume 3, and (iii) subvolume 5 (see figure 21).
Results for the simulation with k0 = 0.125Ep0, Gr= 5 × 106 and us = 0.02. (a) t = 8, (b) 20.
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Figure 23. Distribution of passive markers illustrating the dispersion of interstitial fluid
initially located in (i) subvolume 1, (ii) subvolume 3, and (iii) subvolume 5 (see figure 21).
Same flow as in figure 2 (k0 ≈ 0). (a) t = 8, (b) 20.

the nose of the current. The differences become somewhat more pronounced only
at later times, when the frontal velocities are slightly higher for higher k0. These
differences are better seen from figure 25, where the front position xf and the mass
of suspended material mp are given as functions of time for the different cases. The
curves for xf (t) essentially collapse at early times, but some deviations in the front
position occur after t ≈ 15. However, concerning mp(t), no appreciable effect of the
initial turbulence level can be detected. All three curves are in very close agreement
over the whole time interval between t =0 and t = 30 for which direct comparison is
made here.

The results presented in figures 24 and 25 demonstrate that the influence of the
initial turbulence level within the suspension is weak, especially during the early flow
development. This finding may seem surprising, since the difference between the three
cases lies entirely in the initial conditions, which might suggest that the flow evolution
immediately after the release should be affected more strongly than in the later stages.
However, a closer look reveals that turbulent motion existing prior to the release is
quickly damped by dissipation in the strongly accelerated flow during the formation
of the front. To illustrate this, figure 26 compares the temporal evolution of potential
energy, kinetic energy, and both dissipation components Es and Ed as obtained from
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Figure 24. Contours of spanwise-averaged particle concentration at (a) t =10, (b) t = 30. In
all cases us = 0.02 and Gr = 5 × 106. (i) k0 ≈ 0 (same flow as in figure 2), (ii) k0 = 0.125Ep0,
(iii) k0 = 0.25Ep0.

the simulations with different initial turbulence levels. The differences with respect to
k0 are recognized from the values for k at t = 0. Note that the curves indicate that
the initial kinetic energy in the turbulence field amounts to approximately 25 % and
50 % of the maximum kinetic energy in the later flow evolution, respectively. The
initial differences in k, however, rapidly decrease within the first few time units owing
to large dissipation rates (indicated by the strong increase of Ed in the simulations
with k0 > 0). The decay of the ‘internal’ turbulence is enhanced by the onset of the
large-scale convective motion, which results in strong vortex stretching. We found
the decay rate shortly after the release to be about twice as large as the decay rate
observed in the preparatory simulation performed to generate the initial turbulence
field. This large dissipation during the start-up phase of the gravity currents leads to
offsets in the curves of Ed which amount to k0 within an accuracy of a few per cent.
The small differences between k0 and this offset are again mainly due to the limited
accuracy of the low-order scheme that was employed for the time integration required
to compute Ed (cf. figure 7).
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Figure 25. Front position xf and mass mp of suspended particles (normalized with the initial
mass mp0) as function of time for Gr= 5 × 106 and us = 0.02. Comparison of results obtained
from simulations with different initial turbulence levels. Solid line, same flow as in figure 2
(k0 ≈ 0); dashed line, k0 = 0.125Ep0; dot-dashed line, k0 = 0.25Ep0. (Simulations with k0 > 0
were conducted until t =30 only).
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Figure 26. Time history of kinetic energy k, potential energy Ep and the dissipation com-
ponents Es and Ed , respectively (see (4.4), (4.5), (4.14), (4.15)) for Gr= 5 × 106 and us = 0.02.
Results normalized with the initial potential energy Ep0. Solid lines, same flow as in figure 2
(k0 ≈ 0); dashed lines, k0 = 0.125Ep0; dot-dashed lines, k0 = 0.25Ep0.
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7. Summary
We have discussed results from a high-resolution computational study of particle-

driven gravity currents developing either from a lock-exchange configuration or from
a deeply submerged pool of suspension. The primary objective of the work was to
analyse flow features that could not be studied in previous experimental or theoretical
work. We have put special emphasis on the energy budget of the flow, showing how the
conversion of potential energy into fluid motion and dissipative losses proceeds with
time. Concerning the latter, we emphasized that in a particle-driven flow dissipation
has two distinct components: one being due to gradients in the macroscopic convective
velocity field, the other being caused by the microscopic Stokesian flow around each
particle. The computational results suggest that, in a particulate front, both contribute
about equally to the overall loss of mechanical energy. However, further simulations
for a wider range of flow parameters may be required to clarify fully the generality
of this finding.

Another flow feature addressed in detail is the mixing between ambient fluid and
interstitial fluid. Both are assumed of equal density here, meaning that no stratification
remains in the flow domain when all of the particles initially suspended have settled
out. It was shown that after the propagation of the front has ceased, an enhanced
mixing sets in that gradually spreads the interstitial fluid over the full channel
height. How uniformly the interstitial fluid is eventually distributed depends, among
other things, on the settling speed of the particles. The mixing is driven by large-
scale vortices that persist after the particulate front has disappeared. For the deeply
submerged flow, we observed that the vortices continually grow in diameter, tending
to become two-dimensional. The influence that the width of the flow domain may
have on this trend towards two-dimensionality is an aspect that deserves further
analysis; however, computationally this issue can only be tackled at the expense of
further greatly increased numerical effort.

E.M. gratefully acknowledges support of this research through NASA’s Micro-
gravity Program.
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Härtel, C., Carlsson, F. & Thunblom, M. 2000b Analysis and direct numerical simulation of
the flow at a gravity-current head. Part 2: The lobe-and-cleft instability. J. Fluid Mech. 418,
213–229.
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